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REPORT 1129

TRANSVERSE VIBRATIONS OF HOLLOW THIN-WALLED
CYLINDRICAL BEAMS'

By BERNARD BuDIANSKY and EDWIN T. Ktuszowiat

SUMMARY of the secondary effects by means of numerical results for
The variational principle, differential equations, and bound- hollow beams of rectangular cross section of various lengths,

ary conditions considered appropriate to the analysis of trans- widths, and depths.
verse vibrations of hollow thin-walled cylindrical beams are SYMBOLS
shown. General solutions for the modes and frequencies of Il cross-sectional area
cantilever and free-free cylindrical beams of arbitrary cross c- Fourier coefficient

tion but of uniform thickness are given. The combined influerwe ffori shear-carrying are

of the secondary effects of transverse shear deformation, shear lag, Is effetie r-dfiedin ea

and longit-dinal inertia is shown in the form of curves for I, constant
cylinders of rectangular cross section and uniform thickness. E modulus of elasticity
The contribution of each of the secondary effects to the total
reduction in the actual frequency is also indicated. moment of ertia

I moment of inertia

INTRODUCTION K geometrical parameter defined in equation (29)
The elementary theory of bending vibration is often in- L length of cantilever beam, half-length of free-

adequate for the accurate calculation of natural modes and free beam
frequencies of hollow, thin-walled cylindrical beams. Such N, parameter defined in equation (.31)
secondary effects as transverse shear deformation, shear lag. 71 maximum kinetic energy
and longitudinal inertia, which are not considered in the I maximum strain energy
elementary theory of lateral oscillations, can have appre- a half-depth of redangular beam
ciable influence, particularly on the higher modes and b halt-width of rectangular beam
frequencies of vibration. The effects of transverse shear , b. Fourier series coefficients
deformation and of rotary (rather than longitudinal) inertia , 3, n, n integers
have been studied by many on the basis of the original inves- k, frequency coefficient, JA

tigations of Rayleigh (ref. 1) and Timoshenko (ref. 2).
Anderson and Houbolt (ref. 3) have presented a procedure k.R coefficient of shear rigidity.
for including the effects of shear lag in the numerical calcu- L AG
lation of modes and frequencies of box beams of rectangular k, coefficient of rotary inertia,
cross section. However, there does not appear to exist a LVA
general solution for the vibration of hollow beams that in- p perimeter of cross section
corporates the influence of all the secondary effects men- s distance along periphery of cross section (see
tioned. fig. 1)

The purpose of the present report is threefold: First, to t wall thickness S
exhibit the variational principle, differential equations, and u(z,s) longitudinal displacement in x-direction
boundary conditions appropriate for the analysis of the w(x) vertical displacement in y-direction
uncoupled bending vibration of hollow thin-walled cylindrical z longitudinal coordinate
beams; second, to give general solutions for cantilever and y vertical coordinate
free-free cylinders of arbitrary crow section but of uniform • y-coordinate of center of gravity of cross section
thickness; and finally, to show quantitatively the influence v, shear strain .

'Supuundu NACA TN 2 "Thamwrn Vibrations of Hollow Thin-Wsibld Cylndflal Baums" by Remard Budlansky and Edwin T. Krustowski, 195.
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48longitudinal mstrin tudinal displacement u(z,a) of oach point of the median line
* inclination of normal with vertical (see fig. 1) of the beam wall.

Lagrangians multiplier The longitudinal and shear strains arm given in terns of
a mas of beam per unit length u~z,.) and w(z) as

P mass density of beam
longitudinal direct stress(w
Shear atr...

* ~natural frequency of beam d
natural frequency of beam calculated from dce- b=l+dw. ,(2

mentary beam theory dSo0(2

66) Kronecker delta (I if i=j; 0 if i P'j) and the corresponding stresses btecome
0 constraining relationship

BASIC UQUATIONS EO 3
Aassumptleas.-The problem to be considered is that of (3

the natural bending vibration of a thin-walled hollow anid
cylindrical beam whose cross section is symmetrical about at r. = G 611 + mi, ill e) (4)
least one axis (see fig. 1). The transverse vibration is sup- sd
posed to take place in the direction of this axis of symmetry
of the cross section so that 110 torsional oscillations are whtere 0 is the inclinationl of the niormnal with tile vertical (see

indlumel. fig. I).
In the present analysis, the following simplifications arc lil e'lemenetary heini~i theor y, where the effects of all shear

introduced: distortion are ne-glected. the longitudinal distortion 'i(a'sx) it;
(a) Changes in the size and shape of the cr0ow SectionI are relatedl to lthe vertical dhisplace'ment it:(.) ItY

neglected.
(b) Stress and strain are assumed to be uniform across ltle IV,'

wall thickness. U -'Q=YY :1r
(c) The small effect of circumferential stress uponl longi-

tudinal strain is neglected. where P is ithe y-/-ioordinale of the center of gravitY of tile
In accordance with statements (a) and (b), the distortions cross section. lin tile presenit report. however. to(.rs is

of the vibrating beam are completely described by the allowed to be perfectlIV genera-l, So that shlear distort ions (and
vertical displacement v'(z) of a cross section anil the longi- consequently (the so-called shear-lag still tronsverse-shear-

deformationl effects) are full * taken into account. Fulrthler-

o Nomalmore, because cross sections are not constrained to refllain
At plante, the- inertia e-ffect associatedl with motion in lthe

longituidinal direction is more prope-rly designadted SE tile
effect of Ion ilitlinol inertia than the effect of rotary inertia.

uPVariationtal principl, and gelomeotrical boundary colodi-
g tiona. -The variational equation to be writ ten is appropriate

to beams whose endS are. either fixed, simply Supported, or
about '~free. For some sueh beam vibrating in a natural mode, the

t N\ \ ~ maximum strainl energy is

N o r m al) f f L ý Jf ( i a u ) ' I d e d L ? j f ; O u d -s i n . ) t d o d :

where u~z,x) and w(i) are the amplitudes of displacement, for
the particular mode considered. Thie maximum kinetic
energy is

T -- jL Ptei'w'd# d~r+ f Lfp~wuldiR dx (6)

(c)(W where uuis the natural frequency of the mode tinder considera-
tion and p is the mmn density of the beam. 7The second

ryil orao us nastion. (h Hgn eonventiorm. term in equation (6) constitutes the contribution of longi-
0j"sosy besiam Fre-ree twam. tuudial inertia to the kinetic energy.

Fitemi I.-Cordtnaste system. and sign eaviventlons. A natural moode of vibration must Satisfy the variational
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equation Fixed ecud:

where the variation is taken independently with respecti to Siniply itpote -0:

hd(z,x) and w(.r) anid with the provision that both U(xM) 811( sup.le - o
v'(.) must satisfy the geometrical boundary conditions of
the( problem; furthermore, a (z,x) must he periodie in the K oil
coordinate s Withi a period equal to the perinmeter it. 'Illiio
geometrical boundary conditions are tr=t andi u=t1 at at F'ree'ed

fixedi end andi only uT=0 at a simply suppo-wrted end. At aof /a
free end no geometrical boundary conditions are illipotted. ~9sl ~

DifferentWa equations and natural boundary conditions.oi
Equations (5). (6). ,tand (7) imi conjunction with thle usual El t
proicedure of the calculus of variations Yield the following O

simulitaneoius integrodifferential equations for it antl tr: 'I'lie imnti'griaitfrentil isl eqiual ions (M) aniltit (1, whiCh 24pec4fV

('1 ~~~ Imz ~eq uihil rimnl in thi' lon~gi tudinal andu I traiisve'nw dir'ct ions
El + ' Cl+,' sin 0)]+- ptwotu ý 8) respiet ivel . , c-an, olf couirse. Ilii' writ Ienii dircet l wit iiimit

6.fxrecamamnid to thme vari~ationmal plrinciplIe.

(" + , silV 6j M ±- AMW~l = 4) (11) GENERAL SOLUITIONS FOR CYLINDERS OF t1NIFOIEH WALL

Wher ox dx-THlCENES8
u lien' I ~The follow imIg I'Xctkt i lt ii ins for cylhinders of uniforin wall

Pt - (IMs0 thirkswi'ss alrt- ia rrie ild l hi nai's o'f Fe varier ilerica iii con-

junction Witlli lile amppl i1.,1 ihmi of tIii. variat ionsal condli tion
anti1 lilt- bondmtiary eqtua tions at each end of lith eslicanrt-r (eq. (7 )). Thiis lronebl ire. w hich doews not requhire explicit

oetwistlerstlion oif the us i oral hlhiondaS rv volllit onus, was

Et 0)a /-o 11 believced t0 l14. Inllie ex peih ent t baa a diirect alt ack miiaeimisthe
ixt( sinan ltaneous hiit egrodeifferen toil equationst (elS land M9 anti14

aftIrall their associatedi hIuNela1111 rv oililitions.

S(( + %inl e) sin 0 dIs 8r=~ 1) (12) Cantilever beam. -The geometrical biouniear v e'indilit ons,
for at cantilever 'mean, w4 previously showi,, are-

At a fixedl 4e. 11d. 1 ioh ioiindary cil~tioit (11(t) awl (ý12) are of.(MI 1 0 (h)= -
4satisfieil hi1 virlt 04 of till#- fact thiat till- geonietrical hiounilarY
Condlit ions requhire that both but anti bit, Ite zero. At a simpl -y (Ke fci'g. I ). Apparopriat Ic 0551111pt ionls for t lieilpiiicis
.supported enl bw=- 0, but, since 6izsis perfectly arbitrary. a, (x) a1wl ii (X.X 4 Sri'
lilt- variatiolnal procress forre's thai' equality

Ef 0~t (13 mi)c'x ~+,.-i n 2L

Fitiall -, at a fr.ee i'iid. siniee the're are' no( geomeitrie'al iiiii- llaoa 1- 2#t., il el I m
sI raints. both bc itu ani 6 are- arbitrary* anti hence tilt' varia-21
tionmil prlme'eaa force's, ima addhitiotn to e'quat ion (I 3i). lith- 'l'e cowldit iemm 'a 11.s 4 4 Iisaltisticil by veach I crm1 of eqi it-

64'( + ill e) silm 6 dX= 1) ,l4J)14) *'~I 47

Eqmiat ions (i :i and (14) consatituItti so-calledi ''hattural
siounelarv -otieit ioms" biecauase thiev are- awomtntiaati tis isil t' oi'ellcli-e I ii t lilt- i-armialaiotia I pnwoetire mi b.% me'ans of theii

fied as lith- result of a variat ional prcs.E a ~l(~i Amgranlgialm Ill mill i phieri mie'tlhod Th'e* i'hoie ti~'of thei pert icailam
rreeognized a% the conlit ion of YAero longitudiiinal dire'cl stress t rigmomometric- fumitit jes usedl ili Owii Foumrie'r -wiens (15 sl 4aid
while'e tiajt iomi (14 4 simply st iptilat eis that the( total vetcl ()waits gui idii IY lvoielisii ll'rs n ti ioflii' d trtiliogonaiiit y
ithear force vanish. I requinred for, tii.' sitimplijivlt',iojri if i'xpr ioi ins ike I t raini

Thus it) sumlmarize', the appropriate boundary* cotmeitjllan eniergy. Theliii'oaslama C k isierdediii ill Ilil'-lexplressionl for

reqtinrm'd for the soilution of eqauations (8) andi (9) arn' -0.0in ordier tha litrl'4L) he. imrest riimi'i.

go
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Using equations (15) and (16) in equations (5) and (6) With the use of the nondimensional parameters
yields

2'-T - -E (26)
S

1 JL~ I ~ a~ mu: ~2nw dsd:1k H(7
RCOS 2"L P 0L (7)

2nr . mux .i2nws.
-a.--s L sin- +()J.- G1 + ptL2 Al(2p 2L P11 • RfXA

sin 8. -b. •- sil-[ ds d1,- 161
L 2L, A,-) (29)

L - , and

W • L In = , U rn T S • s 2BA i 2 - -k , t2k , 2 1_ 3 0 )

in. 'r COS 2n sy (I (18)2J 0 J \0-.5 =-2.L os / equations (21), (22), and (23) may be reduced to 0

To make equation (18) stationary and at the same time I'i 2\'I

satisfy the constraining relationship 4k,2  .a,.+
ip=C+ .= (1) -11 2 - •L3X

2(19) ( -1 kC-- 0 (i=1,35.... () 31)
iv El

it is sufficient to set
6(1'--T--X¢)= 0 (20) (k 2sB,++K-2-(l +6,,)a,,+l - Plijb=0

4L+ (i = 1.:1, 5 ...
where the variation is with respect to the a's, b's. and C (j=0,l,22 .... ) (32)
considered as independent variables; here ? is a Lagrangian
""nultiplieraINs variational process reults in the following k2' 4 -s2( -1 )•b'+ks'LO,(3
equafftions: ka i3.fl 

5 Fj--- k 1 "+ El= (3

-7), 3 n 7i A1 .+G ) iR 'sL, For j=0, equation (32) becomes

2Ll r2 8 2L J 2 k j2 - ,2 aj=0 (i= 1,3,5 ... ) (34)
JAW, 4b,-(- 1)2 pwC-, L-'

-0 (i=1, 3, 5 . .. ) (21) Equation (34) is not coupled to any of equations (31) to
(33). A given value of ag0 corresponds to the amplitude of

(t'Ž-T,( 2 L'TlP.4 (I + ,6)a,-j-I G\(' 2J,4J'L'pa+ the ith mode of longitudinal oscillation, and if this value of
p6a Et( 2i4p + a, is not equal to 0, then equation (34) simply gives the

•1 b L• frequency of this longitudinal mode. Consequently those.Gt A ib,--,pt4 (1 -a±•)a, 1 =0 eqhations in equation (32) for values of j=0 are not asso-
eiated with transverse bending and so arte ignored henceforth.

(iI , 5 . ) For tile remaining values of j (that is, j0) equation (32)
(j=0. 1. 2, 2 .. ) (22) yields

x )2--) =--2 L.-- +KX 4 L b (i= 1,3,5 .... )
or at, sB 2 +K 2

3 b, (j=1,2,3 .... ) (35)
=0 (23)

where Substituting the expression for au in equation (35) into
A'ý2ý sin #sin 2ans dx (24) equation (31) and solving for b, gives

P P
L-!- 2 , Lx

(- 1) 2 ir k n. E !
A t sin, is (25) N N(i, 3,5 .... ) (36)

[ •
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| where

' K2 A •
i'vA ,1- Thk ., - •"'~ 1, (37)

In the appendix this expression for N, is shown to be equivalent to

iN2= B'irsB A B,4L, - A 1,
2 16 A- (38)

Since the series in equation (38) is considerably more quickly convergent than that in equation (37), equation (38) should be
used in actual numerical calculations of N,.

Substitution of equation (36) into equation (33) and the constraining-relationship equation (19) gives the following two
homogeneous equations in C and X:

kW [ I+ k.-.,-) N-C+ EI+ks,,a. L-f (--1)' 2 n'-2 N- F-•__-u~ = (39&)

l) - 2 2 L3k (39b)

Finally the condition for a nontrivial solution for C and X gives the frequency equationt

1, + ' ) wJ I+~ 2 ~ j( 1
,I +/ U7- 2 1 0 (40)

I +N--1.3, 5  )

which the frequency parameter k8 must satisfy. Since the symnmetrically vibrating free-free beam is obtainied from
terms of the infinite series which appear in the frequency equation (39a) by setting X=0 anti is
equation contain k8 itself, the roots of equation (40) are most
conveniently found by trial. Fortunately tie infinite series k9E[1 +k1 2 (2 j1 =0 (41)
in equation (40) as well as the series in the definition of Al L ,N,3.s \nt#,'%.J
converge rapidly so that only a few terms are needed to After a particular root, k. is found front equation (41), the
evaluate them with.sufficient accuracy. shape of the corresponding symnietrical free-free mode may

Once k, has been determined for a particular mode, the be obtained from equations (36) (with )=0) and equations
corresponding mode shape can be found by letting C= I and (35).
solving either of equations (39) for X and then finally evaluat- Free-free beam-antisymmetrical modes.-Consider a
ing b, and ai successively from equations (36) and (35). free-free beam of length 2L undergoing antisymmetrical

Free-free beaa-aymzetrical modes.-If the origin of a vibrations. Explicit consideration need be given only to the
free-free beam of length 2L is taken at the midspan (see fig. right half of the beam (see fig. 1). anti for this half-beam the
1), the form of the Fourier series assumed for w(:) and u(xm) only geometrical boundarn, condition that must be imposed
when the beam is undergoing a symmetrical mode of vibra- is that w(0)=0. The spanwise displacement o(0,s) is unre-
tion may be exactly the same as that assumed for the strained by virtue of antisymumetry.
cantilever beam of length L (see eqs. (15) and (16)). The Appropriate assumptions for the displacements w(z) and
only difference in the ensuing calculations is that the con- u(.r,*) art- then
straining condition (19) is not introduced. Consequently, it W(i)=nX.. (42)
can he readily seen that the frequency equation for the J b sin 2• t',

.J S
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anti
.- _. mur~ 2nus

u (•X), a,, cos M • 2 Cos 2r (43)

:ý Xi ,.3 P

'ril linear portion Cx of the expression for u,(z) is needed in order to give( the beamn sufficient freedom at the tip (t= 1.

The choice of the particular trigonometric function in the series expansion for u(.f.,) was, as in the case of the cantilever

beam. guided by consideration of the orthogonality required for fhe simplification of the expressions in tIle strain energy.

The zeroeth terni in the series for W(•,..) in tile s-direction was omitted because it only leads to the frequency equation for

longitudinal oscillations.
I'sing equations 142) and (43) in equations (5) and (6) yields 0

J.t-*, ~ 2 ~ p1-- 1. -a-.: 1 ilzis 19."'.0, )nrm) iis) .+j If G Lt-.,. 2,., nre 2per+
2 E 2L nkL' u 2 I0'. ) d,. L ,.P +

sill 0 . cOs-•.• t-J dsd2-•- )X -. b, sin 2L L ('.r

I .o 21"; (is d (44)
2 a " '-O,2.l,,:I1.3 2L " P

The variation of equation (44) with respect to the it's. wlhere A', is defitned ill equationi (3;.

. s. and (' Cgives. after suitable siml)lificatioln. Substitution (If equilltions (6)0) and 151 into) elt lul 4xi I4
aditl simplificatiOn gives as lieth fr'equeucy equat uiion foir wle

.K - tb, - (; =2.4.6.... ) l •yannivii ietrically ' vilhrting free-free beam

(j4- 1.2.3. (4

fla-,,-K I 0 2 ) .+1,: 1 1 +1k,

(j= 1,2,. .... - (461) After a particular value of k" is found fromii equlation 6('552.

tie slhiaie of the corresponding anlityisyniretrical free-free

I Li I + I Illode niniv 1w obtained bly givinig (' tile arbitrary value (if

r.... ' . i 4 kS.' 2 2b unity antd calculating the 6's alid a', successively fromi
equation•s (51). (5(1), and (4111.

7 L• ( -0 (i 2,6. (47 Discussion of parameters. -The j)lirainhl.'.i, entering iii
Dl thie frequlency eqiallil ions nleril discllSitlli. The unknowni

Lntuil frequitency is contaitned olillv inl ihe frequency co-ILt ('L

.- • .2.:1 '.(l A S'0,•s" e fficielnt kR . W hich is de finied i y the f or m uli a w -t k.R , '`

2 and is ill comillnon use in hieaini-vibrat(ion iii nalysis. The
,-2.4A l 3 pr kiietel,' k.• and s]kj are i(dentical with tile shear alnli

inertia llaralinetmers definied ill refere•ce 4. uhich considers
F'roln eqillon (4-5) ile effect of otily I rriusvel'e shear alnd rotary inlerlia oln

lnall vibratiions. The qilllil ilyv .1, %hich appears in lhe

4L Ap resen defiilltiiol of k•' is iai ciiih- tlit the iffe e shear-carr-ing
b, (i 2.4,6 .... ) (49)1 area when plan*- sýecions aire constrained to renilaii planile

0 (j- 1, 2. 3 .... t lhat is. wlien shear lag is liglecteld. The remaining parami-
eters appliearinig ill t(i present (helrivat ion, tiiiiielvy .A A,,

which. except for sign, is the salli' exlpression ias that ti1- K, and At., .... .t.ire essenttially s1hapi)e plarlaimletel's which

tained for the cantilever andi symmetrically vitbrating free- actually, (depenld only oil lie ('Iontolr (If tih(e cross se.tion:

free beanii (eq. (3.5)). F•romi equation (46) its shown in the aplipl'ndix.

KI -L~ A*K ' ... •= l .1,2

al0)Xks 2 +K 2ij 2 t (j= 1.2.3 ) 150) A1 2 n-1.23

AY-" 2 A A.'
*Sllbslihition of equation (49) into equation (47) gives r2l1 .l. 1,,,3

61= - 2 kIanti (lie A.%'s ire simiiply the Fllourier covelicients of hlie
-t .)' i C• (i=2.4.6. . . .. ) .51.? j funetion sinl 0. which is4 el'lelidelt olinly oin the shape (If tile

Ni

I

t0



TRANSVUESE VIBRATIONS OF HOLLOW THIN-WALLED CYLINDRICAL BEAMS 7
crosst section. These shape parameters are related to shear- beams. numerical calculations. have bleen performed for
lag effects and their interaction with transverse shear cylinders of rectangular cross section oscillating as free-free
and longitudinal inertia. beams. The calculations have been limited to symmetrical

The effect of longitudinal inePrtia is assoc1tiate W ith the modes of vibrationi, and coiisequeiitl ' tile frequency equation
parameter kju. If the effect of longitudinal inertia is to he (41) is applicable. For re( tangular cross sections the quail-
neglected, it is sufficient to set kju equal to zero in tile filial tityV in ay be put1 into closed form as shown in the appendix,
frequency equation. If kg., is equal to zero, 11, becomeis in- 8and this closedl-forin version of N, was used in thle- caicula-
dependent of ka. Appreciable simplification in a trial-and- lions. A value of E't.; equal to 2.65 (appropriate for
error solution for the natural frequency' then results since, alumninuni alloys) was assumed.
with R?, independent of k., thle infinlite summation contained'4 The( re-sults of these calculations tire shown iii figures 2, 3,
in N, is also independent of ka and niced be calculated onily anid 4. In figure 2. thme ratio of the nhat ural frequency W~ t)
once for any p~articular bean. A.s is shown in the following the( natural frequency 'vw, olitairied front elementary beami
.sectioni, the effemt of disregarding the influenice of longitudinal theory is shown his at funict ion (If the plawi-forin aspect ratio
inertia may often be negligible. L'b for cross-sectijonll aspect ratio o45(f 1.0, 3i.6, anti Co

Without presentatitonl (if details, it fuiay be mentioned that The cont ribut ion (If each of tit(- secondar~y effects tol the( total
for the case oIf a circular cYlinder, which has not shear l ag, redauct ion in the natural frequivecY for thle cross-sec-tional
all the A.s except AI vanish anti1 the frequency equlat ions til b ~ailt. alleseii itrsIad4

aispectatio - ý. n . ath eniifgr- 3ad4(40). (41). andi (52) mnay be put into Closed formis identical a
to thoI se given ini reference 4.. Again, if in the general fre- respect ively. Thet cr4 ls-(ct ional ivspect ratijo of b=0
(jillel* v equtions k,~i is set equa1fl to zero,. the- eqtuationis niaY a

be puit int v( lom-d formnis equiiivalent to1 those of reference 4 Coirrespiond~ s toI the Iilimitinig vase oIf at Ieanin where the effec-ta

where unkv rotarv inmentia is consilere(il. (If tranisverse' shevar deformato t jInd114 longitudinal inert ia are
negligiblie a nd thlerefoIre thle reil ult i(It in natural frequency

RESULTS FOR CYLINDRICAL REAMIS OF RECTANGULAR Ti e(-I irsedline to s igure lag.4sutereutini
CROSS SECTION Telse te nfgrs3afi hwtlerdldini

fr~meq cic d' v touetotit( inclusion of the( effect of only transverse
In order to show quiati litaIi vel v the effects of shear lag, shear deformat ion ats ob~tainled front reference 4.

transverse shear dleformiatin and1 51 long'it udinal inertia onl The lol,,- and14 short -udaii lines lire calculatedt from thle
tlie natuaral frequencie-s of 1101104W tIi in-walled yinrcl 1 frequleicY eqiuait~ion (41I) w~ith A-,,- t0 anda conseq5uenitly

1.0 _T

4o t

.2 2ir

02 6 to 14 2 6 10 14 2 6 10 14

(a) First symmnetrIcal mnode. (b) S~econd P'iunietrical mocke. (ci Third -inhim-1ricaI mode.

Feanrai 2.-Change in the natural freque'ncy of a itymmetrically vtibrating fri'e-frvi, cylinder do itil' tihl iIIrllisioI, ofI 5'l'1L1(y effects.
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Fpxtttr 3.- Cointribiutioti of triitiverv4' hiear deformationi, shear lag, Cso iiiiutiiiboiiier of toIlergin%-,v l ii h-Gtrinatln hr~ear~ lar
and loigituildilial itiert ia i to lie( redi et itti iii tuat ral frequency fur a d I iiidn livtt i h-rd rin i iu d footiiif-
b= 1 = 1.0.
a 3.6. a

lag andl trwnsvvtrst' shetar 4lefortinti m aret'Iaketi into aevttiint. (if I a s i-s it t' an lt Ilvioi t i h l a i lelit IIi it-ri a~ %%l~~il
Thnýttshe haIti-heit' rik tlrtea I en the'l dltashed ant i It(- long- andt inifreaiuisitt cit iss-seci- al utI aspl 'it ratio. It14-d it itt ii , at;a-a I-

shlort -tlash lilies mit b e tonide54 tried as showinog Ihe at ldiit iontl fr-om the re'ltsil I fil 3t-.4; .t hat ftitl stt t tIlt

redut IIiont ill ni t it-al freq tltncv -.%hen fIt lie flu ence of shear wso ng ldla( IIil1 l 11VUlq14Vb'Vllil14
lag i6 cons.ideredl. FinallY, Ilit' solni lintes are- calt-itlited with ii "irstfltii iittlii'Iiltll it--ti i tt~itt~

k,, taken ill0isto t'oti It. antil cotiseq i ttly IVliet shtttded area pt-a ct u-ivay t hg
1 igi ilt,.0

silows tilie addititonial jufiltetiti of Itingiltitldintl iniertiaitll~ Awii i atitittltttiiZI i'jl tite t ittfh~t

Fxamina ti on of figitres 31 itnti4 alitd thl'eti -vts fttt' b ilii thietliiitihit' ititnlst' % ilt inctreaising I. b. it tmighit liplwtl't. ill

figure 2 Rhovws that fill, infuel nce't of sliiar lag incteastes as th lit 51111i-fortni iisjf a'i tilt to. lti.vi-,if liltit aiddi tiitioa vifecitIs

0

0
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of shear lag are considered on a percentage basis with the type and emphasize the need for practical calculation pro-
dashed line as a base, it will be found that shear-lag effects cedures for such strueturve that would take into account
actually reduce in percentage with increasing L/b. A similar transverse shear deformation, shear lag, aml, % hen necessary,
criterion should be used in judging the influence of longi- longitudinal inertia. The general solutions preaented for •r 0
tudinal inertia. cylinders of uniform thickness, as elI as the numerical results

CONCLUDING REMARKS for rectangular box beams. should he useful in the assessment
of the accuracy of any protedurv of this kind that may be

The numerical calculations show that secondary effects developed.
have appreciable influence on the natural frequencies of
rectangular box beams of uniform wall thickness. These
results constitute an indication of the probable inadequacy of l,.os•tm AERIsONAUTICALc I,•n imiyr.T4kil,
elementary beam theory for the vibration analysis of actuaJ NATIONAL ADVISOHY (.uMMTrrm.I. '411t .\ I TIE5.

aircraft structures of the monocoque and semimonoeoqtd• L.N.;UAY Fmla.), V.%., Janeuary 21, 1954.

APPENDIX
TRANSFORMATION OF PARAMETERS 0

Expressions for AsIA, I, and K2.-If sin 0 is expanded into or
a Fourier series I p, P /

2nws Al A. .) P (AN)
sin 0= A, sin (A 1) X63 _1

,P and, consequently.

the Fourier coefficients A. are the same as those defined in " (A9)
equation (24); that is, . 2nz 1A.3 2

2urs With the use of equations (AN) and (A9), the expression
.4,pf sin 0 sinP ds (A2) for I in equation (AW) becomes

The effective shear area As (eq. (25)) can now be written !•= 2 t A1.2 (AI0) S
as a function of the Fourier series expansion for sin 6 as r, ,-1.2.3I

2nrs 'ds With the series expansion for I in equation (AI)0, the param-
A,2 ps / eter K2, as defined in equation (29), becomes

With the use of the appropriate orthogonality conditions, 2 A - A.' (A 1)
equation (A3) becomes, after the integration is performed, h1= 'Is X12,3 n2)

p-t - -- A,' Transformation of expression for N,.---In equation (37)
- 2 - 2,3.2.3 N, was defined as

o r i'rs i rs K A 2 10A R2 k
- ± A. (A4) 8k,- 16k,28 KAsn-., s2,,kBg ik,, (A12)

The moment of inertia I of a cylinder is defined as (see The infinite series that appears in this expression converges

fig. 1) as A.2 and therefore is a relatively slowly converging series.
In order to increase its rate of convergence, the following

I1=J y't ds-Ay' (A5) transformations are made.

By adding and subtracting A.1 /K' inside the infinite
where P is the y-distance to the center of gravity of thme eross summation in equation (A12) and using equation (A4), the
section and is given by e(quation simplifies to

-yt 's (A6) Nr= i27r2 A B A. k,1 (Ak3)

pt 16 As :I k?,'B,- K'-2 K 2
But

Btd (A7) By adding and subtracting A./l/Kln' inside the infinite
sin summation in equation (A13) and using equation (All), the
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expression for N, can be transformed to

i'r', is'A -,4k. ( Ant
32 16 A., 5 !isAm's (A14)'n)

The infinite series in equation (A14) converges as A.2/nl and therefore is considerably more quickly convergent than the
series in equations (A12) and (A13), which converge as An' and A.2/n', respectively.

Closed ftrm of N, for eylindrcal beam of rectangular cross secton.--For a cylindrical beam of rectangular cros
section, with dimensions as shown in figure 2, it is possible to write the expression for N, in a closed form. The param-
eters for such a cros section become •

A=4(a +b)1=pt
A.=O0 (it even) (Al15)

=4cos 2nrb (n od(m ihr p

With equations (AiS) the parameter N, shown in equation (A 12) econmes

3 2 ; cost2iwb"N,= r• - P • 2 P -.- ) 'e (AM6

"-8k, a 4k

or
i P +

Sk,,•-012 a •.•"

Each of the infinite summations in equation (A17) can now he written in closed form as shown in reference 5, and the
closed expression for N, then becomes

i2 i8a_ I
N. .T K p [a 2K kW*" B'(P +tn k, Be( I' (Ale)

s f" 4kB, a osh ksr -2 Rtn 2
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